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This review describes the production of atomic strontium samples at ultra-low tem-
perature and at high phase-space density, and their possible use for physical studies and
applications. We describe the process of loading a magneto-optical trap from an atomic
beam and preparing the sample for high precision measurements. Particular emphasis
is given to the applications of ultracold Sr samples, spanning from optical frequency
metrology to force sensing at micrometer scale.

1. Introduction

Recently, laser-cooled atomic strontium has been the subject of active research
in several fields spanning from all-optical cooling towards quantum degeneracy
for bosonic,1,2 and fermionic3 isotopes, cooling physics,4,5 continuous atom laser,6

detection of ultra-narrow transitions,7,8,9,10 multiple scattering,11 and collisional
theory12.

Much of that interest relies on the features of the electronic level structure
of alkali-earth atoms, that make them ideal systems for laser manipulation and
for the realization of quantum devices. Among the alkali-earth metals, strontium
summarizes most of the useful properties both for the preparation of ultracold
samples and for applications.

The ground-state Sr atom presents a strong and quasi-closed optical transition
well suited for efficient trapping in magneto-optical traps (MOT’s) from thermal
samples,13,14 and a multiplet of weak intercombination transitions with large inter-
est in laser cooling and optical metrology. All of these transitions are easily accessi-
ble with compact solid-state laser sources, as described in Appendix A. Second-stage
cooling on the narrow 1S0-3P1 intercombination line was proven to be an efficient
method to reduce the sample temperature down to the photon recoil limit.1
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The absence of a nuclear spin in all of the bosonic isotopes greatly simplifies the
electronic energy spectrum with respect to the already simple structure of alkali
atoms, and allows a direct verification of theories in the field of light scattering15

and laser cooling.5 Moreover, the lack of nuclear spin results in minimum sensi-
tivity to stray magnetic fields: this has important consequences on high-precision
measurements, as discussed in sections 6 and 7.

Interatomic collisions may represent an important source of perturbations in
atomic quantum devices. In this respect, the 88Sr atom exhibits excellent features
due to its remarkably small collisional cross-section, resulting in the longest coher-
ence time for Bloch oscillations observed so far.16

As a consequence of their zero magnetic moment, ground-state bosonic Sr iso-
topes cannot be magnetically trapped. However, optical dipole trapping with far-off
resonant laser fields provides an effective method for trapping in conservative poten-
tials. By properly choosing the wavelength of the trapping laser field, it is possible
to design optical potentials that shift equally levels belonging to the singlet and
triplet manifolds, hence avoiding perturbations to a given intercombination line.17

This feature is the basis of laser cooling in dipole traps and allows one to reach a
temperature close to the recoil limit with a phase-space density close to quantum
degeneracy both with bosonic and fermionic isotopes.18,3,2

Several groups are presently working on laser cooled strontium. The Tokyo group
first demonstrated the double-stage optical cooling down to sub-µK temperatures;1

they also proposed and realized a Sr “optical lattice clock”,19 and made pioneering
studies on electric microtraps for strontium.20 The JILA group has made interest-
ing studies on cooling physics,4,5 and on metrological applications.10 Our group
is concerned both with ultracold physics studies,2 and with applications to opti-
cal metrology9 and quantum devices.16 The BNM-SYRTE group is mainly con-
cerned with metrological applications,8,21,22 the Houston group with ultracold Sr
physics,23,24 while the Nice group has studied multiple scattering of light from cold
Sr samples,15 and analyzed several details of the Sr cooling mechanisms.25

From the experimental point of view, some of the techniques and solutions
involved in atomic strontium cooling are specific to this atom and to some extent
uncommon in the field of atomic physics and laser cooling. In this paper we give a
detailed description of how to prepare an ultra-cold strontium sample which is well
suited for high-precision spectroscopy, the study of quantum degenerate gases and
quantum sensors. The presentation has the following structure:

• section 2 summarizes the properties of the strontium atom,
• section 3 describes the process of laser cooling of strontium starting from

the slowing of a thermal beam, to the cooling down to the photon recoil
limit and trapping in a conservative potential,

• section 4 deals with the study of ultracold collisions on the ground-state
bosonic Sr isotopes,

• in section 5 we show some recent advances towards the realization of a
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Table 1. Natural Sr isotopes (NIST data)

Isotope Relative atomic mass Relative abundance Nuclear spin

88Sr 87.905 6143(24) 82.58(1)% 0
86Sr 85.909 2624(24) 9.86(1)% 0
87Sr 86.908 8793(24) 7.00(1)% 9/2
84Sr 83.913 425(4) 0.56(1)% 0

Bose-Einstein condensate (BEC) of strontium,
• in section 6 we present the use of ultracold Sr atoms as force sensors at

micrometric scale,
• in section 7 we review the recent frequency measurements on the Sr inter-

combination transitions with application to optical metrology,
• in Appendix A we give a detailed description of the experimental setup

employed in laser cooling of strontium, namely the vacuum apparatus and
the laser sources.

2. Properties of the strontium atom

The main properties of atomic strontium are common to almost all alkaline-earth
metals. At ambient temperature it appears as a metal. Its vapor pressure is quite
low, and it reaches 1 mTorr at 1000Kelvin. The Sr atom is rather reactive: it forms
compounds with oxygen, nitrogen, water and silicates, while it is inert against sap-
phire. Thus in working with Sr vapors it is common to employ sapphire windows.26

Strontium has four natural isotopes, whose properties are listed in tab. 1. The
bosonic (even) isotopes have zero nuclear spin, thus they are perfect scalar particles
in the J = 0 states. This has important consequences for applications to optical
metrology and quantum sensors (see sections 6 and 7).

Concerning the electronic level structure, due to the presence of two electrons
in the outer shell the atomic states can be grouped into two separate classes: sin-
glets and triplets. Since the spin-orbit interaction breaks the spin symmetry, inter-
combination transitions between singlet and triplet states are weakly allowed.27 A
simplified scheme of relevant Sr levels and transitions is shown in figure 1.

The strong 1S0-1P1 transition at 461 nm has a natural width of 32 MHz, and it is
used for laser cooling and trapping.13,14 Such transition is not perfectly closed, due
to a small leakage towards the 4d 1D2 state (branching ratio ∼ 10−5). The direct
1D2-1S0 decay channel is forbidden in dipole approximation, and atoms from the
1D2 basically decay towards the 5p 3P2 (branching ratio 33%) and 5p 3P1 (branch-
ing ratio 67%) states.

The line strength of the three 5s2 1S-5s5p 3P intercombination transitions range
from the relatively high value (7.6 kHz) of the 689 nm 1S0-3P1 line to the virtually
zero value of the 1S0-1P0 line for the even isotopes in the absence of external fields.
In 87Sr the 0-0 line has a natural linewidth of ∼ 1 mHz due to hyperfine mixing.
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Fig. 1. Electronic level structure of atomic strontium. The transitions relevant for laser cooling
and optical manipulation are indicated as well as their linewidths.

3. Laser cooling and trapping

A magneto-optical trap operated on the 1S0-1P1 line requires the use of a blue laser
source, that can be realized through second-harmonic generation from a semicon-
ductor laser, as described in section A.2.

The final temperature in such a “blue MOT” is limited to few mK by the
linewidth of the 1S0-1P1 transition: the ground state of alkaline-earth even iso-
topes has no hyperfine or Zeeman structure, and this prevents the application of
sub-Doppler cooling techniques. However, the presence of narrow intercombination
transitions allows efficient second-stage Doppler cooling down to sub-recoil temper-
atures, as described in 3.4. In 87Sr, the ground-state hyperfine structure offers the
chance for sub-Doppler cooling on the 1S0-1P1 transition, as demonstrated by the
JILA group.4 Alternatively, it is possible to apply sub-Doppler cooling techniques
to atoms trapped in the metastable 3P2 level, as already demonstrated on Ca.28

In this section we illustrate the Sr cooling and trapping in detail, as performed
in our laboratory. We start by preparing a mK sample in the blue MOT from
a Zeeman-slowed atomic beam, using optical pumping to recycle atoms from the
metastable 3P2 level. Then we transfer the atoms to a “red MOT” operated on the
1S0-3P1 intercombination line, where we cool them down to µK temperatures. Our
apparatus allows us to trap different Sr isotopes simultaneously, as described in 3.5.
The final step consists in loading an optical dipole trap.

3.1. Zeeman slowing and atomic beam collimation

The sequence for cooling and trapping on the 461 nm resonance line follows standard
techniques, as already reported by other groups.1,4,14,29 We slow the thermal atomic
beam to few tens of m/s in a 30-cm long Zeeman-slower30 based on a two-stages
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tapered coil with a zero crossing magnetic field, and a counter-propagating laser
beam frequency shifted by 480MHz to the red of the 1S0-1P1 transition. The beam,
with typical power of 40mW, has a 7 mm 1/e2 radius at the MOT and it is focused
on the capillaries (see appendix A.1). The distance between the capillaries and the
MOT region is 100 cm.

The atomic beam brightness can be increased with a 2-D transverse cooling
stage before the Zeeman slower.31,32 This improves the MOT loading both by in-
creasing the atomic flux coupled into the differential pumping tube (see A.1), and
by effectively reducing the final diameter of the atomic beam after the Zeeman
slower.

We implement a 2D optical molasses with two 461nm beams sent perpendic-
ularly to the atomic beam, in multipass geometry on two orthogonal planes. The
beams are red detuned by 20MHz with respect to the 1S0-1P1 resonance. At given
optical power, the multi-pass geometry improves the transverse cooling efficiency by
increasing the length of the interaction region. In the present setup we use beams
with 1/e2 diameter of 2.5mm2 bouncing about 12 times to cover an interaction
length of 4 cm. The interaction starts 15 cm after the capillaries (see A.1). In that
region the beam diameter has already reached about 11mm.

Without beam collimation we can couple into the differential pumping tube
(placed 24 cm far from collimation region) about 10% of the total atomic flux. With
the 2D molasses we increase the coupling by a factor of 4 in optimal conditions (laser
detuning ∼ 20MHz, optical power ∼ 20mW). This simple scheme can also be used
to deflect the atomic beam.

3.2. Blue MOT

The slowed atoms are then cooled and trapped in a MOT operated on the 1S0-
1P1 transition 40MHz to the red with respect to resonance. Three retro-reflected
beams with a 5 mm 1/e2 radius cross in the MOT region with almost mutually
orthogonal directions. The vertical beam is collinear with the magnetic quadrupole
axis of an anti-Helmholz pair of coils. The field gradient at the quadrupole cen-
ter is 50Gauss/cm. Taking into account the coupling efficiency of the blue laser
source into the fiber (70%) and the efficiency of the AOMs (75 ÷ 80%), the re-
maining 120mW are split into the three channels: typical power values are respec-
tively 60mW for MOT beams, 40mW for Zeeman slower and 20mW for transverse
cooling beams. The total 461 nm light incident on the MOT region amounts to
∼ 90mW/cm2.

We have a rough estimate of the number of trapped atoms by collecting the
461nm fluorescence on a calibrated photodiode. By changing the blue laser detuning
we are able to separately trap the four natural Sr isotopes, as shown in figure 2. For
a more accurate measure of the atom number we perform absorption imaging on
a CCD with a resonant 461 nm horizontally propagating probe beam. We measure
the sample temperature with standard time-of-flight technique.
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Fig. 2. Fluorescence of blue MOT as a function of laser detuning. Resonances corresponding to
the different isotopes are visible.

The lowest temperatures measured in the blue MOT are typically higher than
the Doppler limit by at least a factor two. The Nice group has shown that the
extra-heating mechanisms causing such discrepancy can be explained in terms of
intensity fluctuations in the MOT laser beams.25

3.3. Optical repumping from metastable states

The 1S0-1P1 transition used in the first stages of cooling and trapping is not per-
fectly closed due to the decay channel of the 5s5p 1P1 towards the 5s4d 1D2 state,
that has a branching ratio of 2×10−5. Atoms in the latter state may decay back to
the ground state trough the 5s5p 3P1 within less than 1 ms, or may decay to the
metastable 5s5p 3P2 and be lost (see figure 1). Under typical MOT conditions this
process limits the MOT lifetime to few tens of milliseconds.

Some groups already circumvented this limitation by optical pumping atoms
from the metastable 5s5p 3P2 to the ground state via the 5s6s 3S1 state with 707 nm
light.33 Since the 5s6s 3S1 state is also coupled to the metastable 5s5p 3P0 an ad-
ditional laser at 679 nm is necessary in this scheme. To reduce the number of
repumping lasers we use a different approach which involves the 5s5d 3D2 state and
requires one single laser at 497 nm. Concerning the optical pumping, the 3D2 state
is coupled basically to the 3P2 and 3P1 states, then efficient pumping is insured
within few absorption cycles. To this purpose during the loading we illuminate the
blue MOT with light at 497nm, produced by the source described in section A.2,
which is kept on resonance with the repumping transition. Figure 3 shows the effect
of the repumping field on the 88Sr MOT loading in different conditions. Without
the repumper the MOT loading time (1/e) is 10.2 ms regardless to the presence of
the atomic beam transverse cooling, and correspondingly to the flux of atoms cap-
tured. In presence of the repumper we observe a 0.24 s lifetime when few atoms are
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Fig. 3. Fluorescence of the charging MOT. Solid line: with transverse cooling and repumper. Dash:
with repumper. Dot: with transverse cooling. Dash-dot: without repumper or transverse cooling.

present in the MOT, and a decreasing lifetime down to 0.11 s at full MOT charging.
This reduction in lifetime is explained in terms of light assisted collision.33

Due to the difference in the natural isotope abundance (see section 2), the
loading flux into the MOT varies correspondingly. In typical conditions, i.e. when
operating with the transverse cooling and optical repumping from the metastable
state, and with the Sr oven kept at ∼ 700K, the steady-state blue MOT population
amounts to ∼ 108 atoms for 88Sr and ∼ 107 atoms for 86Sr.

3.4. Red MOT

The Tokyo group first realized a strontium MOT operated on the 1S0-3P1 line.1

Such system has been exhaustively studied by the JILA group, both theoretically
and experimentally.5 The dynamics of laser cooling on narrow transitions presents
several interesting features. Unlike in the case of ordinary magneto-optical traps,
for the 1S0-3P1 transition in alkaline-earth atoms the natural linewidth Γ is of
the order of the recoil frequency shift ΓR. In such conditions both mechanical and
thermodynamical MOT properties cannot be explained by the ordinary semiclassi-
cal Doppler theory of laser cooling. In particular, the role of gravity becomes non
negligible, and the atomic temperature can be lower than the recoil limit TR = !ΓR

kB
.

When the laser detuning δ is negative and larger than the power-broadened

linewidth Γ
√

1 + I
Isat

, the atoms interact with the MOT laser beams only on a

thin ellipsoidal shell, corresponding to the surface where the laser frequency offset
compensates for the Zeeman shift. The maximum radiation force is only one order
of magnitude larger than gravity. As a result, the atoms sag on the bottom of the
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ellipsoid, as shown in the inset of figure 4. In such conditions the atomic temperature
is mainly determined by the interaction with the upward propagating vertical MOT
beam. With typical laser intensities of I ≃ 101 ÷ 104Isat, measured temperatures
are in good agreement with a semiclassical model, and can be expressed as

T =
!Γ

√

1 + I
Isat

2kB
, (1)

which is lower than the Doppler temperature at the same detuning. At low laser
intensity (I ≈ Isat), the cooling mechanism becomes fully quantum-mechanical,
and the minimal attainable temperature is TR

2 .5 Figure 4 shows the dependence of
the MOT temperature on the 689 nm laser intensity, as measured in our laboratory.

The JILA group also studied the case of positive laser detuning, revealing the
appearance of novel striking phenomena such as momentum-space crystals. They
showed that driving the atomic system with 689 nm light blue detuned from the 1S0-
3P1 resonance may result in a periodic pattern in the atomic velocity distribution.5

Second-stage cooling of the odd Sr isotope is more complex, due to the hyperfine
structure of both ground and excited states. The Tokyo group has shown that
using two lasers at 689nm it is possible to cool and trap 87Sr atoms at phase-space
densities close to the Fermi degeneracy.34

We here illustrate the red MOT for bosonic Sr isotopes as realized in our labo-
ratory. The 689nm light for the MOT beam (14mW) is provided by a slave laser
injection-locked with light coming from the stable master laser described in A.3.
The beam spot is then enlarged to the same radius as the 461nm MOT beams and
overlapped to the blue beams with a dichroic mirror. After that mirror, the two
wavelengths share the same broad-band optics: polarizing beam splitters, mirrors
and waveplates.

The linewidth of the intercombination transition is not sufficient to cover
the Doppler broadening corresponding to the velocity distribution of the sample
trapped in the blue MOT. An efficient solution consists in broadening the spectrum
of the 689nm laser field.1 On the contrary, groups working on other alkaline-earth
atoms (i.e. Ca and Mg) employ a resonant coupling to some higher level to quench
the 3P1 lifetime,35 thus increasing the effective strength of the intercombination
transition, as the maximum radiation force would be otherwise lower than gravity.

We add a frequency modulation at 50 kHz in the first 200ms. The total frequency
span is 2MHz, corresponding to 40 sidebands, with an intensity of 120µW/cm2 per
sideband (the saturation intensity is Isat = 3 µW/cm2). The central frequency is
red detuned by 1 MHz with respect to resonance. At the end of the FM recapture,
we normally obtain a cloud at a temperature of about 20µK. After that we remove
the frequency modulation, set a fixed red detuning from 1S0-3P1 transition and
reduce the beam intensity in the last 60ms of cooling. Working at 350kHz below
resonance and reducing the total light intensity on the MOT to 70µW/cm2, we
can then transfer about 10% of the atoms from the blue MOT to the red MOT at
temperatures below 1 µK.
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g

Fig. 4. Measured atomic temperature and population of the red MOT as a function of the laser
intensity with our apparatus. The inset shows in-situ and free-fall images of the trapped atoms.

3.5. Cooling and trapping isotopic mixtures

Among the experiments on ultracold atoms, much work is being concentrated on the
study of mixtures of different atomic species36,37,38 or different isotopes of the same
species.39,40,41,42 Mixtures offer a way to exploit collisional physics not applicable
in single species samples.43 They also offer additional degrees of freedom, such as
sympathetic cooling, in order to achieve the degenerate quantum regime with atoms
for which evaporative cooling is not efficient.44

For simultaneous trapping of different isotopes previous experiments employed
laser sources delivering the necessary frequency components for each isotope
involved.45,39 In the case of the strontium blue MOT, this approach may be diffi-
cult to apply because of the complexity of the laser sources and the limited laser
power. An alterative solution is presented by the use of the magnetically trapped
3P2 state as a dark atom reservoir.46,47,48 During the blue MOT phase without the
repumper, the small loss channel of the excited 1P1 state towards the metastable
3P2 state provides a continuous loading of atoms into the potential given by the
MOT’s magnetic quadrupole. Figure 5 reports our lifetime measurements on the
magnetically trapped metastable isotopes. By using the same blue laser source, one
can sequentially load different isotopes into the magnetic potential by just stepping
the laser frequency to the different resonances.

We typically start by collecting one isotope (say 86Sr) for a few seconds, then we
tune the blue laser on resonance to the other isotope (say 88Sr). Once the isotopic
mixture is prepared in the 3P2 state, the blue light is switched off, and the FM
red MOT is switched on as well as the repumping beam. The isotopic shift on the
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Fig. 5. Decay of the 3P2 state when trapped in a 56G/cm magnetic quadrupole. Circles (86Sr)
and squares 88Sr refer to data taken for the individual isotopes with the blue MOT switched off;
diamonds (86Sr) and triangles (88Sr) with the blue MOT operating on the undetected isotope.
The measurements are taken after red MOT recapture. Reprinted figure with permission from
N. Poli et al., Phys. Rev. A 71, 061403(R) (2005). Copyright (2005) by the American Physical
Society.

repumping transition is smaller than the resonance width of the 3P2-3D2 transition
observed on the blue MOT fluorescence, which results in efficient, simultaneous
optical pumping of 88Sr and 86Sr on a time scale short with respect to the red
MOT capture time. The loading of a single isotope into the magnetic potential was
already described by Nagel et al.,47 and we did not observe significant differences
in the behavior when loading two isotopes. Figure 5 shows the measurement of the
lifetime for each isotope, both when individually trapped and in the presence of the
blue MOT working on the other isotope. The measured lifetime values are all of
the order of 5 s, close to the background pressure limited lifetime of 7 s.

The laser source for the operation of the two-isotope red MOT is composed of
two slave lasers injected from the same frequency stabilized master with a frequency
offset corresponding to the isotopic shift of 163 817.3 kHz.9 Subsequently, the fre-
quency and intensity of the two beams are controlled by double pass AOMs driven
by the same RF, the beams are superimposed on a polarizing beam splitter, and
then they are overlapped to the blue MOT beams as described previously. Com-
paring the two-isotope red MOT with the single isotope one, with the same atom
numbers we do not observe any effect in the transfer efficiency and final tempera-
ture due to the presence of the second isotope. In this way, we obtain samples with
up to 107 (106) atoms of 88Sr (86Sr) at a temperature 2µK (1 µK). We attribute
the difference in the loading to the natural abundances and to minor differences in
the red MOT parameters. By varying the order of loading and the loading times of
the two isotopes we can vary almost arbitrarily the final ratio of populations.

The atom number and temperature are measured independently on the two
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isotopes by absorption imaging with the resonant 461nm probe beam, and the
contribution of the non-resonant isotope is taken into account.

3.6. Optical dipole trap

In magneto-optical traps the atomic temperature and lifetime are fundamentally
limited by resonant photon scattering and light-assisted collisions. In all exper-
iments requiring long storage times or ultra-low temperatures, it is convenient
to transfer the atoms into a conservative trap. The ground-state even isotopes of
alkaline-earth atoms cannot be magnetically trapped, due to the absence of Zee-
man structure. Though the Tokyo group has recently demostrated a clever scheme
for Sr trapping with AC elecric fields,20 in most cases the best choice consists in
optical dipole traps. Moreover on two-electrons atoms it is possible to apply light-
shift cancellation techniques to the intercombination transitions,17 opening the way
to optical spectroscopy with ultimate accuracy. However, the optical dipole trap
is widely employed with magnetic atoms as well,49 since it generally produces a
stronger confinement than magnetic traps, up to the Lamb-Dicke regime in optical
lattices,50 and permits trapping in all the magnetic sub-levels.

In an optical dipole trap the confining force originates from the energy level
gradient produced by the intensity-dependent light shift. The energy level shift ∆E
of an atom in an optical field is proportional to the light intensity I and, in the
rotating-wave approximation, inversely proportional to the frequency detuning δ
from resonance:

∆E =
!Γ2I

8δIsat
, (2)

where Γ and Isat are the linewidth and the saturation intensity of the resonance
transition, respectively, while the photon scattering rate RS scales as the light
intensity and the inverse square of the laser detuning:

RS =
Γ3I

4δ2Isat
. (3)

Thus, at a given trap potential depth, it is possible to reduce the heating due to
photon scattering by increasing δ and I proportionally. In far-off resonant optical
dipole traps (FORT) the effect of photon scattering is negligible for most practical
purposes.

The trapping radiation couples singlet and triplet states independently. This
results in a different dependence on the trapping wavelength for the light shift of the
1S0 and 3P1 levels, so that the differential shift vanishes at a “magic wavelength”.
This enables optical cooling into the dipole trap, since the detuning of the cooling
radiation is not position-dependent.

For our optical dipole trap we employ the apparatus described in appendix A.4.
In most cases we use the horizontally propagating beam alone. This single-beam
FORT has a trap depth of 90 µK. The computed radial and axial trap frequencies
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Fig. 6. Crossed-beams FORT loading. The inset shows an in-situ image of trapped atoms. The
graph shows the measured FORT population as a function of the time overlap between FORT
and red MOT. Reprinted figure with permission from N. Poli et al., Phys. Rev. A 71, 061403(R)
(2005). Copyright (2005) by the American Physical Society.

are ωr = 2π×2 kHz and ωa = 2π×26 Hz respectively. The vertical beam produces
a maximum potential depth of about 12 µK. We find good agreement between
computed and measured trap frequencies. The resonant 461 nm probe beam for
time-of-flight absorption imaging propagates horizontally at an angle of about 30◦

with the horizontal FORT beam.
The transfer efficiency from the red MOT to the FORT results from a balance

between loading flux and density dependent losses due to light assisted collisions.17

Figure 6 shows typical loading curves, together with an in-situ image of the trapped
atoms.

The AC Stark shift of the intercombination line depends on the direction of the
FORT field with respect to the bias magnetic field B⃗. We use the MOT quadrupole
field to resolve the Zeeman structure of the 1S0-3P1 line, and we keep the polariza-
tion of the FORT beam linear and orthogonal to B⃗. In such conditions the resulting
light shift is not critical for laser cooling in the FORT. The wavelength used for
the dipole trap is only 7 nm away from the “magic wavelength” for the intercombi-
nation 1S0-3P1 transition.51 When the polarization of the dipole trapping light is
orthogonal to the magnetic field the Stark shift for the 1S0-3P1 transition is lower
than 10 kHz. Thus, it is possible to cool the atoms while loading the dipole trap.18

4. Collisional studies on ground-state even Sr isotopes

The study of atomic collisions at low temperature has undergone a rapid devel-
opment in recent years following the advent of a number of cooling techniques for
diluite atomic gases. The measurement of collisional parameters gives insight into
an interesting and promising physics, allowing tests of theoretical models for inter-
atomic potentials and molecular wavefunctions.33,52 Moreover, a precise knowledge
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of collisional properties is essential for experiments aiming to explore regimes of
quantum degeneracy in atomic gases.53,54

Here we describe a systematic analysis on the ground-state collisional properties
of the two most abundant bosonic Sr isotopes (88Sr and 86Sr) performed with our
apparatus. More specifically, we evaluated the elastic cross-sections σi−j (i, j =
86, 88) for both intra and inter-species collisions, and the three-body recombination
coefficients Ki (i = 86, 88) in the FORT. The elastic cross-sections were deduced
by driving the system out of thermal equilibrium and measuring the thermalization
rate together with the sample density. For the inelastic collisions, we measured
the density dependence of the trap loss rate. The key point of our experimental
procedure is a precise knowledge of the atomic density. This in turn requires a
proper control of the trap frequencies. We assumed the equilibrium phase-space
distribution in an ideal harmonic trap to infer the atomic density from the measured
number of atoms N and temperature T . Our assumption is supported by the fact
that the ratio η = U

kBT
of trap depth and sample temperature was larger than 5 in

all of our measurements. The equilibrium peak atomic density in a harmonic trap
is

n0 = N ν̄3

(

2πm

kBT

)
3

2

(4)

where ν̄ is the average trap frequency, m is the atomic mass and kB is the Boltzmann
constant. Our results show significant differences in the collisional properties of the
two isotopes. Both the elastic cross-section and the three-body collision coefficient
were found to be several orders of magnitude larger in 86Sr than in 88Sr, and the
inter-species cross-section σ86−88 is much larger than the intra-species cross-section
σ88−88.

We adopted the standard technique of observing the cross-thermalization be-
tween orthogonal degrees of freedom.55,56,57,58 The single-beam FORT geometry
is not well suited for this experiment, as the temperature in the horizontal modes
cannot be univocally determined with our apparatus, and because with 86Sr in
our experimental conditions the system turned out to be in hydrodinamic regime
along the axial direction.59,60 Given these constraints, we chose the crossed-beams
geometry for the thermalization measurements.

In order to drive the system out of thermal equilibrium we performed a selective
optical cooling along the vertical direction with resonant 689 nm light. For this
purpose we took advantage of the fact that the FORT is located at the center of
the red MOT, where atoms are not resonant with the horizontal MOT beams.5

We chose the optical intensity and cooling time in such way to create a detectable
thermal anisotropy without introducing dramatic losses.

We measured the intra-species thermalization rate τth by separately loading one
isotope (either 88Sr or 86Sr) and observing the temporal evolution towards thermal
equilibrium (see figure 7). In both cases the total trap loss rate was much lower
than the thermalization rate, so the atom number was constant within shot-to-shot
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Fig. 7. Measurement of the thermalization rate for 86Sr. The graph shows the temporal evolution
of the horizontal and vertical temperatures after cooling on the vertical direction. The solid curve
is an exponential fit to the vertical temperature data.

fluctuations.
We deduced the elastic cross-section from the measured thermalization rate, by

assuming a value of 2.7 for the average number of collisions to reach thermalization,
that is, τth = 2.7τcoll.55,56,61 The collision rate is given by

1

τcoll
= n̄σv̄ (5)

where n̄ is the average atom density, v̄ is the average relative velocity of colliding
atoms, and σ is the cross-section. We computed n̄ and v̄ from the measured values
for atom number N , average sample temperature T and average trap frequency
ν̄. With our assumptions the average density is given by n̄ = n0/2

√
2, while the

average relative velocity is given by v̄ = 4
√

kBT/πm.
We repeated our measurements for different values of the atom density, in order

to check whether the observed cross-thermalization was due to elastic collisions
or ergodic mixing between different degrees of freedom. The resulting values are
σ88−88 = 3(1) × 10−13 cm2 and σ86−86 = 1.3(0.5) × 10−10 cm2. The uncertainty
is mainly due to shot-to-shot fluctuations in the FORT population, that reflect in
both density and temperature instabilities. Such results might be compared with
the zero-temperature cross sections deduced from scattering length values through
the relation σ = 8πλ2, where λ is the s-wave scattering length. Scattering length
values were obtained from photoassociation spectra by the Tokyo group for 88Sr,62

and by the Houston group for both isotopes.24 As concerning σ88−88, our value is
consistent with the Tokyo work, while the Houston group predicts an even smaller
cross-section. On the contrary, there is a fair agreement between our σ86−86 value
and the Houston work. All of these results are summarized in tab. 2

We adopted a similar approach for the measurement of the inter-species cross
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Table 2. Intra-species elastic cross-section for 88Sr and 86Sr, in cm2

Reference σ88−88 σ86−86 Method

Tokyo group62 3(1) × 10−13 λ from PA spectra
Houston group24 < 1.2 × 10−13 2.6 × 10−10 < σ < 3.7 × 10−9 λ from PA spectra

Our group2 3(1) × 10−13 1.3(0.5) × 10−10 cross-thermalization
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Fig. 8. Measurement of the interspecies thermalization rate. The graph shows the temperature
evolution of 88Sr and 86Sr after selective cooling on 88Sr. The solid curve is an exponential fit to
the 88Sr data. Trap populations are 105 atoms for 88Sr and 4.5 × 104 atoms for 86Sr.

section.63,64,65,66 The single-beam FORT was loaded with a mixture of 88Sr (105

atoms) and 86Sr (4 × 104 atoms). We then applied a selective optical cooling stage
(duration 5ms) to 88Sr and observed the temperature evolution of the two samples
(see figure 8). The 88Sr is heated by 86Sr to the equilibrium temperature in few tens
of ms. For comparison, in absence of 86Sr the temperature of 88Sr grows by less
than 5 % in 100ms. The resulting inter-species cross-section was found as σ88−86 =
4(1) × 10−12 cm2. This value is significantly larger than the intra-species cross-
section σ88−88, suggesting the way to a novel and efficient sympathetic cooling
mechanism.2

We studied the inelastic collisions by loading a single isotope in the single-
beam FORT (either 88Sr or 86Sr) and looking at the evolution of the number and
temperature of trapped atoms in the FORT after the MOT operation was finished.
We found no evidence for non-exponential decay with 88Sr. The measured lifetime
of 7 s is consistent with the residual background gas pressure of 10−8 torr. With the
initial atom density at trap center of 3 × 1013 cm−3 this gives an upper limit of
10−27 cm6s−1 for the K88 coefficient.

When loading the single-beam FORT with 86Sr only, we observed a clear non-
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Fig. 9. Decay of trap population when loading 86Sr atoms alone in the single-beam FORT. The
sample temperature is 12 µK, trap depth is 90 µK.

exponential decay (figure 9). We deduced the three-body recombination coefficient
from the density dependence of the loss rate.67 Integrating the loss rate equation

Ṅ = −ΓbN − K86

∫

n3(r⃗, t)d3r⃗ (6)

where Γb is the linear loss rate for background gas collisions, with our assumptions
we can write

ln
N

N0
= −Γbt −

K86(2π)3m3ν̄6

3
3

2

∫

N2(t)

[kBT (t)]3
dt (7)

This formula is valid as long as additional losses due to evaporation can be ne-
glected. In order to limit such effect, we select the coldest atoms by means of forced
evaporation before the measurement.

We deduced the linear loss rate from the wing of figure 9. This value is con-
sistent with the loss rate measured with 88Sr. Then we performed a linear fit of

ln N
N0

+ Γbt versus
∫ N2(t)

[kBT (t)]3 dt to derive the recombination constant. We repeated
the measurement several times to average out density fluctuations reflecting in large
uncertainty on K86. The final result was K86 = 1.0(0.5) × 10−24 cm6s−1.

5. Towards a BEC of strontium

Laser cooling is a very effective technique to reach phase-space densities within
few orders of magnitude from quantum degeneracy. The limits in cooling at high
density are set by the optical depth of the sample, i.e. reabsorption of scattered light,
and light-assisted atom-atom collisions. Forced evaporative cooling represents the
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common way to circumvent these limits.68 However, this procedure is not effective
with all atoms. In particular, among the atoms cooled with optical methods, none of
the alkali-earth atoms reached quantum degeneracy so far, except ytterbium which
has an alkali-earth-like electronic structure.69 A phase-space density of ≃ 10−1 was
reported for Sr but BEC could not be reached.18

On this respect, the results of the collisional measurements reported in 4 sug-
gest that evaporative cooling on pure samples of either 86Sr or 88Sr cannot be very
efficient in our experimental conditions. 86Sr presents an extremely large elastic
cross-section, a good point to establish a fast thermalization, but the 3-body re-
combination rate introduces a loss channel that is fatal with the typical geometries
accessible through optical dipole trapping. An optical trap with a much larger trap-
ping volume would partially suppress this loss channel.70 88Sr instead turns out to
be stable against 3-body decay, but the small elastic cross-section results in a long
thermalization time compared to typical trap lifetime.

On the other hand, our results suggest a novel all-optical sympathetic cool-
ing scheme.2 In the isotope mixture the relatively large inter-species cross-section
results in thermalization times typically of the order of few milliseconds. This ther-
malization is fast even on the time scale of laser cooling on the intercombination
1S0-3P1 transition. Moreover, due to the 164 MHz 86Sr-88Sr isotopic shift and the
natural linewidth of 7.6 kHz for the 1S0-3P1 transition, laser cooling on one isotope
has negligible effect on the other one. It is then possible to cool sympathetically a
dense and optically thick cloud of one isotope (for instance 88Sr) via optical cool-
ing of a small sample of the other isotope (86Sr). Continuous laser cooling of 86Sr
provides heat dissipation in the sample, while the small optical depth on 86Sr does
not limit the achievable minimum temperature. Sympathetic cooling with neutral
atoms normally requires a thermal bath with heat capacity large with respect to
that of the sample to be cooled. This is due to the fact that when the thermal bath
is cooled by evaporative cooling, each lost atom carries an energy of the order of
few times the temperature of the sample. In the case of optical-sympathetic cooling,
each laser-cooled atom can subtract an energy of the order of the optical recoil in
a time corresponding to a few lifetimes of the excited state, without being lost.

We implemented the optical-sympathetic cooling scheme by extending the tem-
poral overlap between the FORT and the 86Sr red MOT after switching off the
88Sr MOT. Figure 10 reports the dynamics of optical-sympathetic cooling, starting
from an initial temperature of 15-20µK, limited by density dependent heating.48,70

It can be observed that the cooling process does not induce losses on 88Sr while
the number of 86Sr atoms exponentially decays with a 80ms lifetime. About 100ms
after switching off the 88Sr red MOT, we observe that the mixture attains thermal
equilibrium.

Under optimized conditions (overall optical intensity 100Isat) the temperature
decays from the initial value with a 150ms time constant. The minimum attainable
temperature depends both on the intensity of the 86Sr cooling beam, and the 88Sr
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Fig. 10. Dynamics of an optically trapped 88Sr cloud sympathetically cooled with laser cooled
86Sr. Filled circles: 88Sr atom number. Open circles: 86Sr atom number. The number of 88Sr
atoms remains constant during the process, while 86Sr decays exponentially with a 80 ms time
constant. Under optimized conditions, the temperature (triangles) decreases with a 150 ms time
constant and the mixture is always at thermal equilibrium. Reprinted figure with permission from
G. Ferrari et al., Phys. Rev. A 73, 023408 (2006). Copyright (2006) by the American Physical
Society.

density. By keeping the cooling parameters on 86Sr fixed at the optimum value and
by varying the number of trapped 88Sr, we determined the dependence of the final
temperature on the 88Sr density. For 6× 105 88Sr atoms trapped in the FORT, the
final temperature is 6.7µK at a peak density of 1.3 × 1014 cm3; the corresponding
phase-space density is 5 × 10−2. This value is only a factor of two lower than
what was previously obtained without forced evaporation,18 but it exhibits more
favorable conditions for starting evaporative cooling, considering the higher spatial
density (more than one order of magnitude higher) and the number of trapped
atoms (gain 2 ÷ 10).

Indeed we applied an evaporative cooling stage on 88Sr by reducing the FORT
intensity after the optical sympathetic cooling. This produced an increase in phase-
space density by roughly a factor of 4, giving a maximum of 2 × 10−1. Such result
is consistent with a numerical simulation of forced evaporation in our experimental
conditions. The gain in phase-space density during evaporative cooling is basically
limited by the 88Sr elastic cross-section. A promising way towards Bose-Einstein
condensation seems to be the use of a dipole trap with variable geometry, to com-
pensate for the reduction in thermalization rate during evaporation.71

Figure 11 shows the dependence of 88Sr temperature after the optical sympa-
thetic cooling (without evaporative cooling) on the number of atoms in the trap.
We determine the density-dependent heating dT/dn ≃ 2µK/(1014 cm−3), which is
20 times lower than the equivalent value for pure laser cooled 88Sr.1 This large
reduction is a direct consequence of the strong selectivity of the 1S0-3P1 transition
with respect to the two isotopes. The limit on the 86Sr temperature of 4µK for zero
88Sr density can be attributed to the laser cooling dynamics in the tightly confining



February 9, 2008 2:45 WSPC/INSTRUCTION FILE Text

Laser Cooling of Atomic Strontium 19

0 2x105 4x105 6x105

4

5

6

7

ph
as

e-
sp

ac
e

de
ns

ity

te
m

pe
ra

tu
re

(!
K

)

88Sr atoms number

temperature

0,00

0,02

0,04

0,06

phase-space density

Fig. 11. Temperature and phase-space density of the 88Sr cloud sympathetically cooled with laser
cooled 86Sr, as a function of the 88Sr atom number. Reprinted figure with permission from G.
Ferrari et al., Phys. Rev. A 73, 023408 (2006). Copyright (2006) by the American Physical Society.

potential of the FORT.

6. Ultracold Sr atoms as quantum sensors

Ultracold atomic strontium is particularly suited for applications in the field of
quantum sensors. Atom interferometry has already been used with alkali-metals
for precision inertial sensing,72,73 for measuring fundamental constants,74,75,76 and
testing relativity.77 The extremely small size of ultracold atomic samples enables
precision measurements of forces at micrometer scale. This is a challenge in physics
for studies of surfaces, Casimir effect,78 and searches for deviations from Newtonian
gravity predicted by theories beyond the standard model.79,80,81

An interesting class of quantum devices is represented by ultracold atoms con-
fined in an optical lattice, that is a dipole trap created by a laser standing wave.82

In particular, Bloch oscillations were predicted for electrons in a periodic crystal
potential in presence of a static electric field83 but could not be observed in natu-
ral crystals because of the scattering of electrons by the lattice defects. They were
directly observed using atoms in an optical lattice.84

The combination of the periodic optical potential and a linear potential pro-
duced by a constant force F along the lattice wave-vector gives rise to Bloch os-
cillations at frequency νB given by νB = FλL

2h , where λL is the wavelength of the
light producing the lattice, and h is Plancks constant. Since λL is well known, the
force along the lattice axis can be accurately determined by measuring the Bloch
frequency νB. In order to perform a sensitive force measurement, a long coherence
time with respect to the measurement duration is required. The most common
effects limiting the coherence time for ultracold atoms are perturbations due to
electromagnetic fields and atom-atom interactions. 88Sr is in this respect an ideal
choice because in the ground state it has zero orbital, spin and nuclear angular
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Fig. 12. Vertical momentum distribution of the atoms at the Bragg reflection.

momentum. This makes it virtually insensitive to stray magnetic fields. In addi-
tion, as shown in section 4 88Sr has remarkably small atom-atom interactions. Such
properties make Sr in optical lattices a unique sensor for small-scale forces with
better performances and reduced complexity compared to proposed schemes using
degenerate Bose or Fermi gases.85,86 This enables new experiments on gravity in
unexplored regions.

We tested such idea by measuring the gravitational acceleration in our labora-
tory with a 88Sr sample in a vertical optical lattice. To this end, we cool ∼ 5× 105

atoms in the red MOT down to the recoil temperature (see section 3.4), so that the
vertical momentum distribution is narrower than the width of the first Brillouin
zone.83. Then we release the atoms from the MOT and we switch on adiabatically
a one-dimensional optical lattice.

The lattice potential is originated by a single-mode frequency-doubled Nd:YVO4

laser (λL = 532nm) delivering up to 350mW on the atoms with a beam waist of
200µm. The beam is vertically aligned and retro-reflected by a mirror producing a
standing wave with a period λL

2 = 266nm. The corresponding photon recoil energy

is ER = h2

2mλ2 = kB × 381nK. We populate about 100 lattice sites with 2 × 105

atoms at an average spatial density of ∼ 1011 cm−3. We leave the atoms in the
optical lattice for a variable time t, then we switch off the lattice adiabatically and
we measure the momentum distribution of the sample by time-of-flight imaging,
after a free fall of 12ms.

We integrate along the horizontal direction the optical thickness obtained by
absorption imaging. The resulting curve gives the vertical momentum distribution
of the atomic sample: in figure 12 we show a typical plot after the integration.

We fit the measured momentum distribution with the sum of two Gaussian
functions. From each fit we extract the vertical momentum center of the lower peak
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Fig. 13. Time evolution of the width of the atomic momentum distribution, showing Bloch oscil-
lation of 88Sr atoms in the vertical 1-dimensional optical lattice under the effect of gravity. From
the the data fit, a Bloch frequency νB = 574.568(3) Hz is obtained with a damping time τ ∼ 12 s
for the oscillations.

and the width of the atomic momentum distribution. We find that the latter is less
sensitive against noise-induced perturbations to the vertical momentum. We can
observe ∼ 4000 Bloch oscillations in a time t = 7 s (see figure 13), with a damping
time τ ∼ 12 s. To our knowledge, the present results for number of Bloch oscillations,
duration, and the corresponding number of coherently transferred photon momenta,
are by far the highest ever achieved experimentally in any physical system.

From the measured Bloch frequency ν = 574.568(3)Hz we determine the grav-
ity acceleration along the optical lattice gmeas = 9.80012(5)ms−2. The estimated
sensitivity is 5 × 10−6g. We expect that such precision may be increased by one
order of magnitude by using a larger number of atoms, and reducing the initial
temperature of the sample.

7. Frequency measurements on the Sr intercombination lines

The advent of laser cooling techniques had important consequences on time-
frequency metrology, by reducing the uncertainty on the frequency of atomic clocks
caused by atom motion.

The recent progresses in two related fields, namely high-resolution laser spec-
troscopy and direct optical-frequency comb generation, opened the way to a new
generation of frequency standards based on transitions in the optical domain. The
use of frequency combs based on self-mode-locked femtosecond lasers has made
possible, for the first time, relatively simple optical-frequency measurements.87,88

On the other hand, the realization of lasers with ultra-narrow emission band now
enables spectroscopy on forbidden optical transitions with quality factor Q = ν

∆ν

in excess of 1015.
Because of their higher frequency, optical transitions have the potential for

greatly improved accuracy and stability compared to conventional atomic clocks
based on microwave frequency transitions.89 Different transitions are now consid-
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ered as optical-frequency standards, involving single ions and neutral atoms.90,91

While single ions offer an excellent control on systematic effects, clouds of laser
cooled atoms have the potential for extremely high precision, as the large number
of atoms reduces the quantum projection noise. Perhaps the use of optical lattices
at the magic wavelength to confine neutral atoms in the Lamb-Dicke regime, as
proposed for the first time on strontium,17,92 summarizes the best of both worlds;
that is, a large number of quantum absorbers with negligible shift of the optical
clock transition due to external fields, Doppler effect and collisions.

Among the neutral atoms, Sr has long been considered as one of the most
interesting candidates.93 Several features, some of which are specific to this atom,
allow different possibilities for the realization of a high precision optical clock. The
visible intercombination 51S-53P lines from the ground state are easily accessible
with semiconductor lasers. Depending on the specific fine-structure component and
on the isotope, a wide choice of transitions with different natural linewidths is
possible (see section 2).

The first phase-coherent absolute frequency measurement of a Sr intercombina-
tion line was performed by our group on the 51S0-53P1 transition, using a ther-
mal atomic beam.9 This represented an improvement by several orders of magni-
tude with respect to previous data.94 Our result is in agreement with subsequent
phase-coherent measurements performed by the BNM-SYRTE group on a thermal
sample,8 and by the JILA group on a free-falling ultracold sample using a red
MOT.10 The JILA measurement provided a further improvement in the accuracy
by more than two orders of magnitude.

However, the 1S0-3P1 transition is not best suited as a final frequency reference,
due to its natural linewidth of 7.6 kHz. Some groups recently began working on
the 698 nm 1S0-3P0 line, that is strictly forbidden in the even isotopes since it is
a J = 0 → J = 0 transition. In 87Sr the hyperfine mixing enables direct 1S0-
3P0 excitation with a transition probability of ∼ 1 mHz. The BNM-SYRTE group
first measured such transition in a blue MOT with an uncertainty of 15 kHz.8 The
Tokyo group performed the first absolute frequency measurement in an optical
lattice on this transition,19 followed by the JILA and BNM-SYRTE groups.95,22

All groups estimated an uncertainty ≤ 20Hz for the absolute transition frequency.
The corresponding 578nm 1S0-3P0 transition in Ytterbium was observed at NIST
in a ∼ 70µK sample on the two odd isotopes, 171Yb and 173Yb, with an uncertainty
of ∼ 4 kHz.96

In spite of its large quality factor, the 1S0-3P0 transition in odd Sr and Yb
isotopes suffers from residual sensitivity to stray magnetic fields and optical lattice
polarization, besides a complex line structure due to the presence of many magnetic
sublevels. Several groups are now looking at the even Sr or Yb isotopes as the best
candidates to represent optical frequency standards based on neutral atoms. Some
groups have proposed different methods to directly excite the clock transition on the
even Sr or Yb isotopes, by properly engineering the atomic level structure to create
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a finite and controllable 1S0-3P0 transition probability. These methods basically
consist in coupling the metastable 3P0 level to other electronic states by using either
multiple near-resonant laser fields,97,98 or simply a small static magnetic field.99

The latter scheme has been experimentally demonstrated on 174Yb at NIST.100

The possible instability due to site-to-site tunneling in optical lattice clocks has
been addressed by the BNM-SYRTE group.21 For accuracy goals at the 10−18 level
they propose the use of vertical optical lattices, in order to lift the degeneracy
between adjacent potential wells.

7.1. Frequency measurement on the 1S0-
3P1 transition with a

thermal beam

In this section we discuss our precision frequency measurements on the intercombi-
nation 51S0-53P1 transition.9 Using a femtosecond laser comb, we determined the
absolute frequency of the transition for 88Sr and 86Sr and an accurate value for the
isotope shift.

The frequency measurements have been performed through saturation spec-
troscopy on a thermal beam with the apparatus described in appendix A.3. As
frequency-comb generator we employed a commercial system based on a Kerr-lens
mode-locked Ti:Sa laser with a repetition rate of 1GHz.101 Its repetition rate and
carrier envelope offset frequency were locked to a GPS stabilized quartz oscillator.
The strontium atomic beam is obtained from the metal heated to 830K. Residual
atomic beam divergency is 25mrad and the typical atomic density in the detec-
tion region is 108 cm−3. We derive a Doppler-free signal using a retro-reflected
laser beam perpendicular to the atomic beam. The fluorescence light from the laser
excited atoms is collected on a photomultiplier tube.

We estimate the indetermination on the reflection angle of the laser beam to be
less than 10µrad. The peak beam intensity of 60µW/cm2 (to be compared to the
saturation intensity of 3µW/cm2) was chosen to obtain sufficient signal-to-noise
for the RC lock onto the atomic resonance. A uniform magnetic field of 10G (see
figure 18) defines the quantization axis in the interrogation region such that the
light is π polarized. The double pass AOM next to the atomic detection (AOM3) is
frequency modulated at 10 kHz to derive the locking signal of the cavity onto the
atomic line.

Figure 14 shows the Doppler broadened resonances of 88Sr, 86Sr, and the hy-
perfine structure of 87Sr. The residual atomic beam divergency produces a residual
Doppler broadening of 60MHz FWHM. In the inset, the sub-Doppler signal for
88Sr is shown. Two independent measurements of the sub-Doppler resonance show
a FWHM of about 50 kHz, which is in agreement with the expected value consid-
ering the saturation and transit time broadening, and the recoil splitting.

Figure 15 shows the result of the measurement of the 88Sr transition frequency
taken over a period of several days. Each data point corresponds to the averaging
of the values resulting from consecutive measurements taken with a 1 s integration
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Fig. 14. Fluorescence spectrum of the strontium 1S0-3P1 line at 689 nm. The lines of the two
bosonic isotopes 86Sr and 88Sr, together with the hyperfine structure of the fermionic 87Sr, can
be resolved. The linewidth corresponds to the residual first order Doppler broadening in the
thermal beam. Inset: sub-Doppler resonance of 88Sr recorded by saturation spectroscopy using
two counterpropagating laser beams. The amplitude of the dip is 10 % of the Doppler signal.
Reprinted figure with permission from G. Ferrari et al., Phys. Rev. Lett. 91, 243002 (2003).
Copyright (2006) by the American Physical Society.
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Fig. 15. Chronological plot of the optical frequency measurements. The error bars correspond to
the standard deviation for each data set. Reprinted figure with permission from G. Ferrari et al.,
Phys. Rev. Lett. 91, 243002 (2003). Copyright (2006) by the American Physical Society.

time over 100÷ 200s. The error bars correspond to the standard deviation for each
data set. We evaluated first- and second-order Doppler and Zeeman effects, ac Stark
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shift, collisional shifts, and mechanical effects of light. The resulting value for the
88Sr transition frequency, including the corrections discussed previously, is 434 829
121 311 (10) kHz, corresponding to a 1σ relative uncertainty of 2.3 × 10−11.

7.2. 86Sr - 88Sr isotopic shift measurement

With a minor change in the apparatus, we locked simultaneously the frequency of
two laser beams to the sub-Doppler signals of 86Sr and 88Sr. This system allowed
us to measure the isotopic shift of the 1S0-3P1 transition by counting the beat
note between the two interrogating beams. For this purpose, the reference cavity is
locked to the 88Sr resonance as described previously and the light for 86Sr is derived
from the same laser beam and brought to resonance through AOMs. The two beams
are overlapped in a single mode optical fiber and sent to the interrogation region.
By frequency modulating the beams at different rates and using phase sensitive
detection we get the lock signal for both the isotopes from the same photomultiplier.
In this isotope-shift measurement most of the noise sources are basically common
mode and rejected. The measured 88Sr-86Sr isotope shift for the 1S0-3P1 transition
is 163 817.4 (0.2) kHz. This value represented an improvement in accuracy of more
than three orders of magnitude with respect to previously available data.102 The
86Sr optical frequency then amounts to 434 828 957 494 (10) kHz.

8. Conclusions

The strontium atom is an attractive candidate both for physical studies and for
applications. We have shown how the properties of atomic strontium are suited
for laser cooling and trapping, for the study of ultracold atomic physics, and for
applications to optical frequency metrology or to micrometric force sensors.

Future work on ultracold strontium offers intriguing perspectives, including the
possible realization of a nearly non-interacting Bose-Einstein condensate, the real-
ization of an optical clock with ultimate stability, or direct experimental tests of
theories beyond the standard model.

Appendix A. Experimental setup

The typical experimental setup for Sr laser cooling and trapping basically includes
a vacuum system, a blue laser source for the atom collection and first cooling stage,
a red laser for second stage cooling and precision spectroscopy, and an infrared laser
source for the optical dipole trap. In the following we illustrate these main parts as
they are realized in our laboratory.

A.1. Vacuum system

The apparatus consists in three major parts: the oven, the Zeeman slower, and the
MOT chamber. The oven generates an atomic strontium vapor by sublimation from



February 9, 2008 2:45 WSPC/INSTRUCTION FILE Text

26 F. Sorrentino, G. Ferrari, N. Poli, R. Drullinger and G. M. Tino
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Fig. 16. Vacuum aparatus. O: oven for St sublimation; IP: ion pumps; TC: cell for transverse cool-
ing; ZS: differential pumping tube for the Zeeman slower; C: MOT cell; TS: titanium sublimation
pump; W: sapphire window for the Zeeman slower laser beam.

metallic strontium kept at ∼ 800 Kelvin. The vapor is collimated into an atomic
beam passing through a nozzle filled with about 200 stainless steel capillaries 8 mm
long which insure a ballistic divergence of the atomic beam of 20mRad.103 Keeping
the capillaries at a higher temperature prevents internal vapor condensation and
clogging.

Following the atomic trajectory (see the sketch in figure 16), the atoms pass
through a region with radial optical access for 2D transverse cooling,31,32 they
are decelerated through the Zeeman slower,30 and finally stopped in the cell that
hosts the MOT. The optical access for for 2D transverse cooling is provided by
a CF35 cube aligned on the atomic beam. On the two free direction two pairs of
windows, AR coated for 461 and 689nm, are sealed with modified copper gaskets.104

A differential pumping stage between the transverse cooling region and the Zeeman
slower insures decoupled background pressure between the oven and MOT region.
The oven is pumped by a 20 l/s ion pump while the MOT is pumped by a 20 l/s ion
pump and a titanium sublimation pump. With this setup, in operation condition,
we achieve a pressure of 10−7 Torr in the transverse cooling region, and a pressure
of 10−9 Torr on the MOT cell. A BK7 window on the atomic beam axis provides
access for the Zeeman slower decelerating beam. To prevent chemical reaction of
strontium and darkening, the anti-reflection is only present on the outer side of
the window , and the window is heated to ∼ 450Kelvin. Paying attention to block
the Sr beam when unnecessary, the window presents a dim shadow after two years
of operation. In the future we plan to exchange the window with a sapphire one,
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Fig. 17. Scheme of the laser at 461 nm. A distributed feedback laser (DFB) is amplified in a
semiconductor tapered amplifier (TA), and frequency doubled on a periodically poled KTP crystal.
The non-linear conversion is improved by placing the KTP crystal into an optical resonator.
Optical isolators (OI) between the DFB and TA, and between the TA and the frequency doubling
stage. Solid lines represent the optical path, dashed lines represent electrical connections. BSO:
beam shaping optics.

again anti-reflection coated on the outer side, from which deposited Sr can be easily
removed.

A.2. Blue laser sources

The light at 461nm (see figure 1) used for the atomic beam deceleration and cap-
ture in the MOT is produced by second-harmonic generation (SHG) of a 922 nm
semiconductor laser (see figure 17). We generate the 922 nm radiation with a mas-
ter oscillator-parametric amplifier system (MOPA). An anti-reflection coated laser
diode mounted in an extended cavity in Littrow configuration (ECDL)105 delivers
50mW at 922 nm, that is amplified to 1.2 W in a tapered amplifier (TA). Opti-
cal isolators are placed between the ECDL and the TA, and between the TA and
the frequency doubler cavity, in order to prevent optical feedback into the master
laser, and optical damages on the amplifier. The frequency doubler is composed of
a 20mm long periodically-poled KTP crystal, placed in an optical build up cavity.
The crystal facets are anti-reflection coated both at 922 and 461nm (R< 0.2%)
and the poling period is chosen to fulfill quasi-phase matching of our wavelength
at room temperature. The resonator has an input coupling mirror with 11% trans-
mission and it is held in resonance with the input light feeding the error signal from
a Hänsch-Couillaud detector106 to a PZT controlled folding mirror. Under optimal
conditions we obtain 300mW in the blue and routinely we work with 200mW. We
frequency stabilize this blue source to the 1S0-1P1 line of 88Sr by means of conven-
tional saturated spectroscopy in a strontium heatpipe. The servo loop acts on the
piezo of the ECDL.
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The light used for atomic manipulation and detection is brought to the vacuum
system through single-mode polarization-maintaining optical fibers to improve the
long-term beam pointing stability.

As we discussed in section 3.3, we employ a turquoise laser at 497nm to increase
the MOT lifetime and number of atoms loaded. As in the case of 461nm source,
there are no laser diodes available at 497nm and the simplest method to produce
this light is frequency doubling an IR laser at 994nm. In this application 1mW
of light is sufficient to saturate the process, then we do not need any amplifica-
tion of the IR light before frequency doubling. The source at 497nm differs from
that at 461nm in few parts. The master laser is an anti-reflection coated diode in
ECDL Littrow configuration. After the beam shaping optics, the IR light is cou-
pled into a bow-tie cavity that contains a 17mm long, b-cut potassium niobate
crystal which is kept at 328K in order to satisfy non-critical phase matching for
SHG. The crystal facets are AR coated both for the fundamental and the blue light
and, like the 461nm source, the cavity is kept resonant to the 994nm laser with
a Hänsch-Couillaud locking. Since this laser operates among Sr excited states it is
not possible to lock the laser to the atomic line on a simple heatpipe. Possible fre-
quency stabilization methods include locking to a reference cavity or spectroscopy
on an atomic sample with a suitable fraction of excited atoms, such as a hollow
cathode lamp, or an heatpipe with gas discharge, or simply the MOT. We chose
the latter system, in spite of the fact that the blue MOT fluorescence signal is not
continuously available during our measurement cycles. In fact the short-term laser
frequency stability is sufficient to keep it in resonance with the 3P2-3D2 transition
for some tens of seconds. Thus we leave the laser free running, and we manually
adjust its frequency at the beginning of the measurement cycle by acting on the
piezo of the ECDL to maximize the MOT fluorescence.

A.3. Red laser source

The 689nm source is composed of a laser diode frequency-locked to an optical
cavity whose modes are stabilized to keep the laser on resonance with the atomic
line. A scheme of the experimental setup is given in figure 18. An extended cav-
ity laser-diode mounted in the Littrow configuration delivers 15mW at 689 nm.
Optical feedback into the ECDL is prevented by a 40 dB optical isolator and a
single pass acusto-optic modulator in cascade. The laser linewidth is reduced by
locking the laser to an optical reference cavity (RC) with standard Pound-Drever-
Hall technique;107 the phase modulation is produced by an electro-optic modulator
(EOM) driven at 11MHz and leaves 85% of the power in the carrier. The reference
cavity has a free spectral range (FSR) of 1.5GHz and a finesse of ∼ 7000. On one
side of the quartz spacer we glued a concave mirror (R= 50 cm) while on the other
side a PZT is glued between the spacer and a flat mirror in order to steer the modes
of the cavity by more than one FSR.

The locking loop includes a low frequency channel acting on the PZT of the
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Fig. 18. Scheme of the 689 nm laser. Experimental setup used for the frequency measurement on
the Sr intercombination line. Optical isolators (OI) and acusto-optic modulators (AOM) eliminate
feedback among the master laser (ECDL), the slave laser, the electro-optic modulator (EOM) and
the reference cavity (RC). QWP: quarter wave-plate. CO: collimation optics. PMF: polarization
maintaining fiber. PMT: photo multiplier tube. The same apparatus is used for Sr second stage
cooling and trapping, but the thermal beam is replaced by an heat-pipe.

ECDL (1 kHz bandwidth), and a high frequency channel acting on the laser-diode
current supply (∼ 3MHz bandwidth). Under lock condition more than 55% of the
incident light is transmitted through the cavity. From the frequency noise spectrum
obtained by comparison with an independent cavity we can infer a laser linewidth
lower than 20Hz, and more than 90% of the optical power in the carrier.108,109 The
RC is acoustically isolated, though we do not keep it under vacuum.110 The optical
table is actively isolated from seismic noise with pneumatic legs. The frequency
drifts of the cavity are compensated by the servo to the atomic signal which acts
on the PZT of the high finesse cavity with a 20Hz bandwidth. In the frequency
measurement experiment described in section 15 the Doppler free saturated fluo-
rescence on a thermal strontium beam provides the signal for cavity stabilization
on the atomic line. The thermal beam source has a similar design as described in
A.1 and it is pumped by a 20 l/s ion pump. However, when using the stable 689 nm
laser for second stage cooling and trapping, as described in section 3.4, we employ
an heat-pipe kept at ∼ 750K instead of the thermal beam, thus obtaining a larger
signal and a more robust lock.

A.4. Infrared laser sources for dipole trapping

After the production of an ultracold sample in double stage magneto-optical trap-
ping, we transfer the atoms in an optical dipole trap made of two infrared laser
beams crossing each other near the waist. The two beams, respectively aligned
along the horizontal and vertical direction, are produced with two independent TA
injected with light coming from the same infrared source used for producing the
blue light (see figure 19), that is close enough to the “magic wavelength” for the
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Fig. 19. The 922 nm laser source for the optical dipole trap.

1S0-3P1 transition. Typically 300mW of light coming from that source are cou-
pled into a fiber and sent to the two amplifiers. The injection of the two TAs it is
regulated by two AOMs which are used to shift the frequency of the two beams
(avoiding interference at the center of the dipole trap) and to apply a fast control to
the output TA optical power. For mode cleaning and delivering the output beams
from the TAs to the atoms, we use two independent single mode fibers. Typically
we obtain about 650mW and 440mW at the fiber output for the horizontal and
vertical beams, respectively. We finally focus the beams at the MOT center, with
1/e2 radii of 15 µm and 35 µm respectively.
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59. D. Guéry-Odelin, F. Zabelli, J. Dalibard and S. Stringari, Phys. Rev. A 60, 4851

(1999).
60. S. D. Gensemer and D. S. Jin, Phys. Rev. Lett. 87, 173201 (2001).
61. G. M. Kavoulakis, C. J. Pethick and H. Smith, Phys. Rev. A 61, 053603 (2000).
62. M. Yasuda, T. Kishimoto, M. Takamoto and H. Katori, Phys. Rev. A 73, 011403(R)

(2006).
63. J. Goldwin, S. Inouye, M. L. Olsen, B. Newman, B. D. DePaola and D. S. Jin, Phys.

Rev. A 70, 021601 (2004).
64. G. Ferrari, M. Inguscio, W. Jastrzebski, G. Modugno, G. Roati and A. Simoni, Phys.

Rev. Lett. 89, 053202 (2002).
65. A. Mosk, S. Kraft, M. Murdrich, K. Singer, W. Wohlleben, R. Grimm and M. Wei-

demüller, Appl. Phys. B 73, 791 (2004).
66. G. Delannoy, S. G. Murdoch, V. Boyer, V. Josse, P. Bouyer and A. Aspect, Phys. Rev

A 63, 051602(R) (2001).
67. E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell and C. E.

Wieman, Phys. Rev. Lett. 79, 337 (1997).
68. H. F. Hess, Phys. Rev. B 34, (R)3476 (1986).
69. Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki

and Y. Takahashi, Phys. Rev. Lett. 91, 040404 (2003).
70. T. Weber, J. Herbig, M. Mark, H.-C. Naegerl and R. Grimm, Science 299, 232 (2002).
71. T. Kinoshita, T. Wenger and D. S. Weiss, Phys. Rev. A 71, 011602(R) (2005).
72. A. Peters, K. Y. Chung and S. Chu, Nature 400, 849 (1999).
73. T. L. Gustavson, A. Landragin and M. A. Kasevich, Class. Quantum Grav. 17, 2385

(2000).
74. A. Wicht, J. M. Hensley, E. Sarajlic and S. Chu, Physica Scripta 102, 82 (2002).
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